
Total scattering and reverse Monte Carlo study of the 105 K displacive phase transition in

strontium titanate

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 S111

(http://iopscience.iop.org/0953-8984/17/5/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 20:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/17/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) S111–S124 doi:10.1088/0953-8984/17/5/012

Total scattering and reverse Monte Carlo study of the
105 K displacive phase transition in strontium titanate

Qun Hui1, Matthew G Tucker1, Martin T Dove1, Stephen A Wells1 and
David A Keen2,3

1 Department of Earth Sciences, University of Cambridge, Downing Street,
Cambridge CB2 3EQ, UK
2 Physics Department, Oxford University, Clarendon Laboratory, Parks Road,
Oxford OX1 3PU, UK
3 ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK

Received 11 January 2005
Published 21 January 2005
Online at stacks.iop.org/JPhysCM/17/S111

Abstract
We report a study of the displacive phase transition in SrTiO3 using neutron
total scattering with analysis by the reverse Monte Carlo method. The
resultant configurations have been analysed in terms of bond distance and bond
angle distribution functions, and using recently developed methods based on
geometric algebra (GA). The resultant picture is that the short-range order in
SrTiO3 closely follows the long-range order, with very little disorder in the
high-temperature phase. This result is in contrast to similar work carried out on
the displacive phase transition in quartz (Tucker et al 2000 J. Phys.: Condens.
Matter. 12 L723–30). The differences between these two systems arises from
the fact that there are many more Rigid Unit Modes in quartz, a point that is
quantified by the GA analysis.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The displacive phase transition at 105 K in SrTiO3 [1] has become one of the archetype
examples of a displacive phase transition, alongside systems such as quartz and the ferroelectric
perovskites. The initial interest in this phase transition arose from the facts that the displacive
phase transition is second-order (continuous), with an easily accessible transition temperature.
The soft modes were measured by both Raman scattering [2] and neutron scattering [3, 4],
giving clean results that enabled SrTiO3 to play the role of a nice example of the soft-mode
picture of the phase transition. Moreover, the fact that the phase transition is continuous
meant that it was a good system for the study of critical phenomena, and indeed several early
sets of results showed departures of several properties from classical mean-field behaviour
(see [5]). The situation was muddied somewhat through subsequent studies of the dynamical
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properties close to the transition temperature, with features such as the central peak and the
incomplete softening of the soft mode that are inconsistent with the traditional soft mode model
(summarized in [1] and [5]). These studies led to the need to consider the role of defects
and surfaces on the behaviour of displacive phase transitions [6, 7]. Recently it has been
suggested that the 105 K phase transition in SrTiO3 can be fully described by classical mean-
field behaviour provided that the Landau free energy function is extended to terms of higher
order than normal [8–10]. In addition to the structural instability at 105 K, there is an incipient
ferroelectric phase transition at 0 K. In fact the ferroelectric soft mode would classically become
unstable at around 30 K, but the quantum fluctuations inhibit the ferroelectric phase transition.
There has been subsequent work on the quantum paraelectric state of SrTiO3 [11–16], but we
are not concerned with this in the present study. Indeed, previous neutron diffraction work [17]
has suggested that these effects are not easily seen in diffraction measurements. To conclude
this brief review, we also note that there has also been work on the domain structure associated
with the phase transition [18, 19].

It is quite possible that the phase transition in SrTiO3, together with that in quartz, is one of
the best studied of all displacive phase transitions. Because of this, it is interesting to apply new
techniques to this system as they become available, partly to provide a useful benchmark, and
partly to see if the new technique can provide new insights. In this paper we report a study of the
phase transition in SrTiO3 using neutron total scattering, with the results being analysed using
the reverse Monte Carlo method [20–23]. Although this is not a new technique per se, the new
GEM diffractometer at the ISIS spallation source [24] opens up this experimental technique for
the study of the types of subtle structural changes that accompany displacive phase transitions.
Moreover, coupled with the development of GEM has been a lot of development work on the
application of the RMC method for the study of crystalline materials, in particularly to take
explicit account of the information on long-range order contained within the Bragg peaks to
augment the information on short-range order contained in the total scattering [22, 23]. Recent
examples of the use of RMC for the study of displacive phase transitions include our work
on quartz [25, 26] and cristobalite [27]. SrTiO3 is more challenging for two reasons. First,
the phase transition in SrTiO3 involves much smaller atomic displacements, and second, there
are three atomic species and hence six distinct partial pair distribution functions (ppdfs) in
SrTiO3, compared to two atomic species and three ppdfs in quartz and cristobalite.

In this paper we briefly review the structural details of the phase transition in SrTiO3 and
the details of the method. We then report some of the information that is readily extracted from
the RMC analysis (including bond angle distribution functions). Finally we apply new analysis
methods developed using geometric algebra to provide new information about the nature of
the dynamic disorder associated with the phase transition and to determine the fraction of the
dynamical disorder that can be associated with TiO6 rotational phonon modes.

2. 105 K displacive phase transition in SrTiO3

The average crystal structures of the two phases of SrTiO3 are shown in figure 1. The high-
temperature phase is the standard cubic perovskite structure, with space group Pm3m. The
low-temperature phase has a tetragonal structure, with space group I4/mcm. The lattice
vectors of the two phases are related by the following transformation matrix:

( a
b
c

)
I4/mcm

=
( 1 −1 0

1 1 0
0 0 2

)
×

( a
b
c

)
Pm3m

. (1)
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Figure 1. Crystal structures of
the low-temperature (left) and high-
temperature (right) phases of SrTiO3,
highlighting the TiO6 octahedra and
showing the Sr cations as spheres.

One way to view the structural changes accompanying the phase transition is to consider
the TiO6 octahedron to move as a nearly-rigid entity. In this representation, the structure of
SrTiO3 consists of corner-sharing octahedra. The phase transition can then be said to occur as
the result of counter-rotations of neighbouring octahedra about the tetragonal four-fold axis,
with maximum rotation of just ∼2◦. This picture may be faulted because it is known that the
octahedra are slightly distorted in the low-temperature phase, and because in the ferroelectric
phase transitions in the titanate perovskites the Ti cation moves off the centre of the TiO6

polyhedron. However, there is a lot of merit in the nearly-rigid picture when considering the
dynamics. If the forces operating within the TiO6 octahedra are stronger than other forces in
the crystal, including the bending forces at the Ti–O–Ti linkage in the x–y plane, and torsional
forces in the z-direction, it can be shown that the phonon spectra contain a potential soft mode
along the edges of the Brillouin zone, i.e. for wavevectors of the form 〈 1

2 , 1
2 , ξ〉 [29]. This is

supported by inelastic neutron scattering measurements [30].
The polyhedral viewpoint has been particularly well exploited in studies of silica-based

materials such as quartz. In these cases the fundamental polyhedra are SiO4 or AlO4 tetrahedra,
linked together at the corners just as in the perovskite structure. This approach, encompassed
within the ‘Rigid Unit Mode’ (RUM) model [29], has been used to understand the origin
of displacive phase transitions in silicates [25, 26, 31, 32], and to understand the nature of
high-temperature phases [27, 33]. There is a fundamental difference between many silicates
and perovskites in the RUM approach. We have noted that the rotational phonon instabilities
(RUMs) for the perovskite structure are restricted to lines in reciprocal space (the edges of the
Brillouin zone). However, in silicates we typically find that there are whole planes of RUMs.
Thus we expect that silicate structures will be much more flexible than perovskite structures.
We are able to address this comparison quantitatively in this paper.

3. Methods

3.1. Experimental method and data analysis

The measurements of the neutron total scattering function were performed on a finely ground
powder sample of strontium titanate using the GEM diffractometer at the ISIS pulsed spallation
neutron source [24]. GEM is a time-of-flight diffractometer with banks of detectors that cover
most of the available scattering angles. Diffraction patterns can be collected to high values
of the scattering vector Q, of order 50 Å−1. This ensures that we obtain good real-space
resolution (�r � 2π/Qmax; using Qmax = 50 Å−1 implies �r � 0.13 Å). The sample
was obtained commercially (Aldrich Chemicals). The powder had a grain size of less than
5 µm and was 99% pure. The sample used in the experiment was contained in a cylindrical
vanadium can of 1.1 cm diameter and 4 cm height. This was mounted within a closed-cycle
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Figure 2. Diffraction patterns from
SrTiO3 obtained at two temperatures
on the high-angle bank of detectors
on GEM, showing data (crosses),
fitted patterns (line), positions of
expected reflections (tick marks) and
differences (data-fit) (lower traces).

helium refrigerator (CCR). Long measurements for subsequent RMC analysis were obtained
at temperatures of 5, 50, 75, 105, 150, 200, 250 and 293 K. Shorter measurements for Rietveld
analysis only were obtained at 20, 30, 40, 60, 70, 85, 95, 115, 125, 135, 145, 160, 170, 180,
190, 210, 220, 230, 240, 260, 270, and 280 K.

Standard methods were used to correct the data for subsequent analysis as total scattering
data. These are described elsewhere [23].

3.2. Rietveld analysis

Rietveld refinement was carried out on all data sets using the GSAS code [34, 35]. For
temperatures below 105 K the initial structure model was the standard tetragonal I4/mcm
model with one independent variable atomic fractional coordinate, and for higher temperatures
we used the ideal Pm3m structure model. In both temperature ranges we used the output from
one temperature data set as the input for the next temperature in the sequence. We refined
isotropic temperature factors for the Sr and Ti atoms, and anisotropic temperature factors for
the O atoms, in both phases. Lattice parameters were also refined in both phases. Because
the splitting of Bragg peaks in the low-temperature phase is slight, we fixed the values of
the peak profile parameters for the data in this phase at the values refined for the data in the
high-temperature phase. Representative fitted diffraction patterns are shown in figure 2.
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data for SrTiO3 for two tempera-
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of detectors on GEM. The points are
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neutron scattering length, leading to
some peaks having negative weight.

3.3. RMC analysis

The method used for the RMC analysis has been described in detail elsewhere [22, 23]. Of
note in our case is the fact that we explicitly use the Bragg diffraction data in addition to
the total scattering data. Although the total scattering data include the Bragg peaks, through
handling the Bragg scattering separately it is possible to separate the information contained
in the long-range order contained in the Bragg peaks from the shorter-range order contained
within the total scattering data in the RMC analysis. Moreover, through the assignment of the
Miller indices of the Bragg peaks, in some senses this adds a three-dimensional component to
the RMC method. We used data-based constraints to prevent atoms moving away from their
equilibrium positions (soft constraints on the Ti–O distance and on the O–Ti–O angles), as
described in [22] and [23]. We did note the tendency for our RMC configurations to generate
internal interfaces, which we associated with the effects of small errors in the data, and which
could be overcome by careful use of soft constraints. Representative fitted normalized total
structure factors, Qi(Q), and total pair distribution functions, D(r) data, as defined in [36],
are shown in figures 3 and 4 respectively. A representative RMC configuration obtained from
the data of 293 K is shown in figure 5.
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Figure 5. Single layer of TiO6
octahedra extracted from an RMC
configuration obtained from analysis
of the 293 K data. The TiO6 octahedra
are shown as solid objects. The Sr
atoms in the layers above and below
the Ti layer are shown as spheres.
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Figure 6. Temperature dependence of the lattice parameters obtained from our Rietveld
refinements. The data for a and c in the low-temperature phase have been scaled by factors of√

2 and 2 respectively to match the data in the high-temperature phase. V 1/3 is the cube root of
the volume of one formula unit and is equivalent to the lattice parameter in the high-temperature
cubic phase.

4. Results

4.1. Results from Rietveld refinement: long-range structural order

Crystallographic results from Rietveld analysis are given in table 1. Cell parameters at different
temperatures are plotted in figure 6, together with the temperature dependence of the cube root
of the reduced unit cell volume. The finite resolution of the diffraction data mean that the
lattice parameters for temperatures just below the transition temperature are able to show a
greater splitting than reality (when comparing

√
2a with c/2), as is seen in figure 6.
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Table 1. Summary of the Rietveld refined structural parameters of SrTiO3. Below 105 K the
space group is I4/mcm; above this the space group is Pm3m. In the tetragonal phase, O atoms sit
at (0, 0, 1

4 ) and ( 1
4 − u, 3

4 − u, 0). Errors are typically 1, 3, and 8 in the last decimal place for a, c
and u, respectively.

Temperature (K) a (Å) c (Å) u

5 5.508 7 7.7978 0.008 57
20 5.508 7 7.7976 0.008 59
30 5.508 7 7.7976 0.008 46
40 5.508 9 7.7974 0.008 18
50 5.509 2 7.7972 0.007 97
60 5.509 5 7.7973 0.007 62
70 5.509 8 7.7972 0.007 25
75 5.510 1 7.7975 0.006 80
85 5.510 3 7.7975 0.006 37
95 5.510 8 7.7976 0.005 84

105 3.897 77
115 3.897 90
125 3.898 13
135 3.898 39
145 3.898 66
150 3.899 01
160 3.899 12
170 3.899 36
180 3.899 66
190 3.899 99
200 3.900 60
210 3.900 73
220 3.901 00
230 3.901 30
240 3.901 62
250 3.902 15
260 3.902 29
270 3.902 57
280 3.902 89
293 3.903 51

The square of the TiO6 [001] rotation angle is plotted as a function of temperature in
figure 7. The results in figure 7 are consistent with the summary of earlier data presented by
Kiat and Roisnel [17], as shown in figure 7. Moreover, apart from the two data points close to
the phase transition, the Rietveld data compare well to the fitted temperature dependence of
the square of the rotation angle obtained by Hayward and Salje [8]. It is likely that the slight
exaggeration of the value of the rotation angle obtained from our Rietveld analysis arises from
small errors in the data, including errors in the lattice parameters (discussed above).

The Ti–O and Sr–O distances from the average positions obtained by the Rietveld structure
solution are plotted in figure 8, where (see below) we make an important comparison with the
results from the RMC analysis. We reiterate that the results from the Rietveld refinement give
information about the long-range order and average positions, and later we will compare these
results with analysis of the RMC configurations, which give information about instantaneous
interatomic distances.

4.2. RMC analysis

4.2.1. Nearest-neighbour interatomic distances. The Ti–O and Sr–O first-neighbour partial
pair distribution functions are shown in figure 9. We have separated the distances for contacts
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RMC analysis (open squares), and
from the data of Kiat and Roisnel [17]
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the Landau theory of Hayward and
Salje [8].
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Figure 8. Sr–O and Ti–O distances
obtained by Rietveld analysis (open
circles) and RMC (filled circles),
differentiating between bonds lying
parallel (marked as ‘z’) and normal
(marked as ‘x–y’) to the [001]
direction. The Rietveld results in
both cases have had 0.035 Å added
to their values to bring the RMC and
Rietveld data onto the same plots.

along the [001] direction from the contacts in the (001) plane. The clear impression from
these plots is that changes in the mean positions are smaller than the widths of the peaks in the
distribution functions. It should also be noted that the widths, of 0.16 and 0.24 Å respectively,
are only slightly larger than the real-space resolution (0.13 Å; see above). The mean positions
are plotted in figure 8 for comparison with the Rietveld results. The RMC mean distances in
both cases are consistently slightly higher than the Rietveld distances, by around 0.0035 Å,
which is much smaller than the real-space resolution and smaller than the histogram bin size
used in the RMC (0.02 Å). Thus we believe that this small difference is probably due to rounding
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errors and is unlikely to be a significant artefact. We have shifted the Rietveld results for both
distances by this small amount in figure 8 in order to aid comparison between the trends in
the Rietveld and RMC data. We note that the trends in the Rietveld and RMC analyses are
similar except in one respect (see below). We particularly note that the same small differences
between the interatomic distances in the [001] direction and in the (001) plane are seen in the
two types of analysis, although from figure 9 it is clear that these differences are not significant.

The main significant difference between the trends in the RMC and Rietveld distances
in figure 8 concerns the slopes of the data in the high-temperature phase. For both types of
distances, the coefficient of thermal expansion of the interatomic distances is slightly larger in
the RMC data than in the Rietveld results. The data for the high-temperature phase shown in
these two figures have been fitted by straight lines to yield values for the coefficient of thermal
expansion of

Ti–O RMC: 1.02 ± 0.04 × 10−5 K−1

Sr–O RMC: 1.24 ± 0.03 × 10−5 K−1

Ti–O and Sr–O Rietveld: 0.78 ± 0.02 × 10−5 K−1

(where the values for the two coefficients in the Rietveld refinements are the same because
both are entirely due to the linear thermal expansion of the lattice). The thermal expansion
from the RMC data is larger than from the Rietveld analysis in both cases.

The same effect was seen in even more dramatic fashion in our previous work on the
phases of silica [25–27]. In these phases, the RMC results show a small thermal expansion of
the Si–O bond, consistent between different polymorphs [28], whereas the distances between
the mean positions of the Si and O atoms obtained from Rietveld refinement are even seen to
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contract on heating. In the silica phases, this effect is associated with the rotational motions of
the SiO4 tetrahedra, such that the distance between the mean Si and O positions (the quantity
obtained from the Rietveld results) is smaller than the instantaneous bond lengths (the result
obtained from RMC). In the silica phases, the thermal expansion of the Si–O bond is larger than
the expansion of the distance between the mean Si and O positions, the latter being negative for
some temperatures. In the case of SrTiO3, the difference between the thermal expansion of the
Ti–O distance is probably due to the existence of the rotational motions of the TiO6 octahedra
in an analogous manner, but the effect is somewhat smaller than in silica. It is not clear why
there should be the same effect for the Sr–O bond, but it is likely that it is associated with the
fact that the predominant thermal motion of the O atoms is at an angle to the Sr–O direction.
In fact it is interesting that the thermal expansion of the Sr–O bond is larger than that of the
Ti–O bond, and there is a greater difference between the RMC and Rietveld values in this case.

4.2.2. Ti–O–Ti angle distribution functions. Figure 10 shows two representations of the
distribution function for the Ti–O–Ti bond angles, θ , namely the pure distribution function
f (θ) and the modified distribution function f (θ)/ sin θ . The problem with f (θ) is that in three
dimensions the number of angles around any value of θ is proportional to sin θ , so that it is
impossible to obtain a peak around θ = 180◦ even if the bond is merely fluctuating around this
angle. On the other hand, f (θ) shows a clearer peak for θ �= 180◦ in the low-temperature phase
where the bond angle fluctuations about a non-linear configuration. In both representations
in figure 10 we show separately the distribution functions for Ti–O–Ti linkages in the [001]
direction and normal to this direction.

The distribution functions clearly show the effect of the phase transition, with the peak
in f (θ) clearly moving away from θ = 180◦ on cooling, and a clear change in the shape
of f (θ)/ sin θ on cooling below the phase transition. The distribution function shows the
existence of small fluctuations in the bond angle of around 5◦ in the high-temperature
phase, with small increases on heating. These fluctuations arise from small rotations of
the TiO6 octahedra. The key result from figure 10 is that the fluctuations in the rotations
of the TiO6 octahedra are small even at the highest temperature. The distribution becomes
narrower on cooling, and below the phase transition the distribution function splits into the
two symmetrically distinct distributions.

4.2.3. T i O6 orientation distribution function. We have used a method, based on geometric
algebra [37] and implemented in the program GASP [38], to compare the TiO6 octahedra
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in an RMC-generated structure to those in the average high-symmetry structure. For each
polyhedron we obtain a rotor describing its rotation relative to the average orientation. To first
order, the z-component of the rotor represents the degree of rotation about the z-axis and so on.

The distribution of the z rotor components, figure 11 has a single peak centred at 0◦ for
T > 105 K; however, the z rotor component shows a bimodal distribution at T < 105 K, with
peaks corresponding to the positive and negative rotations. The mean rotation angle obtained
from this analysis is plotted in figure 7 for comparison with the Rietveld refinement results.
On the other hand, the distribution of x and y rotor components (which are symmetrically
equivalent, and equal to the z-distribution in the high-temperature phase) merely show a single
peak for all temperatures which sharpens on cooling.

5. Discussion

5.1. Comparison with quartz

Comparison of the results presented above with a similar study on quartz is instructive [25, 26].
The latter case also has a displacive phase transition involving rotations of polyhedra, in this
case SiO4 tetrahedra. The interesting point about this study is that there are significant points
of difference between the two systems, as well as some similarities.

The main difference between quartz and SrTiO3 concerns the amplitude of orientational
fluctuations of the structural polyhedra in the high-temperaturephase, which are much larger in
quartz than in SrTiO3. The relatively small amplitudes of fluctuations in the high-temperature
phase of SrTiO3 are seen in figures 10 and 11. Consistent with this is the fact that the effect
on the distances between the mean-positions of bonded atoms is larger, and more dramatic, in
quartz than in SrTiO3. Moreover, the amplitude of rotation that freezes into the structure is only
2◦ in SrTiO3 and nearly 20◦ in quartz. This order-of-magnitude difference in the distortion of
the structure is reflected in a similar difference in the scale of fluctuations.



S122 Q Hui et al

A related point is that the high-temperature phase of quartz has much more disorder in
terms of the arrangement of the orientations of the structural polyhedra, as seen in the RMC
configurations, than SrTiO3, as seen in figure 5. In quartz this disorder arises from orientational
fluctuations with many wavevectors. The reason for this difference is traced to a fundamental
difference in the vibrational dynamics that is related to the topological freedom of the network
of the polyhedra, as will be discussed below.

The main point of similarity between SrTiO3 and quartz is that the polyhedra orientation
functions for both systems have a single peak in the high-temperature phases and multiple peaks
in the low-temperature phases (two in the case of SrTiO3 and three in the case of quartz). This
suggests that the polyhedra are rotating about their mean orientations in the high-temperature
phase, rather than hopping between distinct orientations. Thus the phase transition in SrTiO3

from the perspective of the short-range structure is fully consistent with a classical displacive
phase transition.

5.2. Geometric algebra analysis of the nature of the atomic dynamics

In the case of quartz, information on the relative importance of rigid-unit and distortive mo-
tion was obtained by comparing independent RMC configurations at a given temperature [38].
Each RMC configuration represents a ‘snapshot’ of the structure. Two or more snapshots at the
same temperature can be compared either atom by atom—from which we obtain the RMS dis-
placement of all atoms—or polyhedron by polyhedron. In the latter case, for each polyhedron
we obtain both a rotation (for the reorientation of the polyhedron) and a residual distortion. The
RMS distortion represents the part of a typical oxygen atom’s motion that cannot be accounted
for by rigid-body motions of the polyhedra. This can be decomposed into a component due to
stretching of the Ti–O bond, and the remainder due to bending of O–Ti–O angles.

Our analysis has shown very little temperature dependence of the partitioning of motions
between the three types of motion. Averaging over all temperatures, we obtain the following:

Fraction of motion accounted for by TiO6 rotations: 0.37 ± 0.01

Fraction of motion accounted for by Ti–O stretch: 0.19 ± 0.01

Fraction of motion accounted for by O–Ti–O bend: 0.44 ± 0.02.

These results are in strong contrast to those for quartz [38]. In quartz the ratio of distortive
to total motion for vertex oxygens drops from ∼50% at low temperature to only 15–20%
at high temperature, showing the dominance of rotational motions in the high-temperature
dynamics, and the bending and stretching components are in a ratio of approximately 4:1. This
is consistent with the observation of greater orientational disorder in quartz than in SrTiO3.

5.3. Rigid unit modes in Sr T i O3 and quartz

The differences between SrTiO3 and quartz can be understood in terms of the ‘Rigid Unit
Mode’ model [29, 31, 32]. The idea is that there may be a set of phonon modes that will
propagate without distortions of the constituent structural polyhedra (SiO4 tetrahedra or TiO6

octahedra), which are called the Rigid Unit Modes (RUMs). Quartz and SrTiO3 are both
frameworks of corner-linked polyhedra, with phase transitions in which a low-symmetry form
is obtained from a higher-symmetry form by the condensation of a soft mode involving rotation
of the polyhedra, namely a RUM, at one specific wavevector (k = ( 1

2 , 1
2 , 1

2 ) in the case of the
phase transition in SrTiO3). However, in both cases RUMs can exist with other wavevectors,
and it is in this point that the differences between SrTiO3 and quartz outlined above can be
rationalized.
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The soft mode associated with the phase transition in SrTiO3 can be identified as a RUM
since the TiO6 octahedra simply rotate without inducing any first-order distortions of the
octahedra. In fact there is a single RUM for all edges of the cubic Brillouin zone, i.e. for
k along the lines linking ( 1

2 , 1
2 , 0) to ( 1

2 , 1
2 , 1

2 ) and the lines of equivalent symmetry. This
point, demonstrated in a case study by Giddy et al [29], is consistent with inelastic neutron
scattering measurements of the phonon dispersion curves [30]. On the other hand, in quartz
there are planes of wavevectors in reciprocal space that contain RUMs, rather than the RUMs
being restricted to lines of wavevectors as in SrTiO3 [31]. This implies that there should be
much more overall RUM flexibility in quartz than in SrTiO3. Our data demonstrate this point
very clearly on several counts. First, the fluctuations in the rotations of the TiO6 octahedra, as
shown in figures 10 and 11, are very much smaller than the corresponding fluctuations in quartz.
Second, the RMC + GA analysis has shown that the RUM component of the atomic motion
is much smaller in SrTiO3 than in quartz. Thus SrTiO3 displays more restricted dynamics,
in which the rotational motions are small, and rotational and distortive motions are equally
important, with considerably less orientational disorder in the high-temperature phase.

6. Conclusion

This paper has reported the results of a total scattering study of the phase transition in SrTiO3

and the analysis of the data using the RMC method. This has given a new glimpse at the
atomic motions associated with the phase transition from a local perspective. We have shown,
in contrast to the case of quartz, that the atomic dynamics are not dominated by the RUM
motions, and that the behaviour on a local scale closely follows the long-range order. On the
other hand, similar to quartz we find that the octahedral motions in the high-temperature phase
do not involve hopping between well-defined orientations but follow the form expected for a
classical soft-mode driven displacive phase transition.
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